8 research outputs found

    Towards End-to-end Speech-to-text Summarization

    Full text link
    Speech-to-text (S2T) summarization is a time-saving technique for filtering and keeping up with the broadcast news uploaded online on a daily basis. The rise of large language models from deep learning with impressive text generation capabilities has placed the research focus on summarization systems that produce paraphrased compact versions of the document content, also known as abstractive summaries. End-to-end (E2E) modelling of S2T abstractive summarization is a promising approach that offers the possibility of generating rich latent representations that leverage non-verbal and acoustic information, as opposed to the use of only linguistic information from automatically generated transcripts in cascade systems. However, the few literature on E2E modelling of this task fails on exploring different domains, namely broadcast news, which is challenging domain where large and diversified volumes of data are presented to the user every day. We model S2T summarization both with a cascade and an E2E system for a corpus of broadcast news in French. Our novel E2E model leverages external data by resorting to transfer learning from a pre-trained T2T summarizer. Experiments show that both our cascade and E2E abstractive summarizers are stronger than an extractive baseline. However, the performance of the E2E model still lies behind the cascade one, which is object of an extensive analysis that includes future directions to close that gap.Comment: Accepted to the 26th International Conference of Text, Speech and Dialogue (TSD2023

    Improving abstractive summarization with energy-based re-ranking

    Full text link
    Current abstractive summarization systems present important weaknesses which prevent their deployment in real-world applications, such as the omission of relevant information and the generation of factual inconsistencies (also known as hallucinations). At the same time, automatic evaluation metrics such as CTC scores have been recently proposed that exhibit a higher correlation with human judgments than traditional lexical-overlap metrics such as ROUGE. In this work, we intend to close the loop by leveraging the recent advances in summarization metrics to create quality-aware abstractive summarizers. Namely, we propose an energy-based model that learns to re-rank summaries according to one or a combination of these metrics. We experiment using several metrics to train our energy-based re-ranker and show that it consistently improves the scores achieved by the predicted summaries. Nonetheless, human evaluation results show that the re-ranking approach should be used with care for highly abstractive summaries, as the available metrics are not yet sufficiently reliable for this purpose.Comment: 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM) at EMNLP 202

    Directional Support Vector Machines

    No full text
    Several phenomena are represented by directional—angular or periodic—data; from time references on the calendar to geographical coordinates. These values are usually represented as real values restricted to a given range (e.g., [ 0 , 2 π ) ), hiding the real nature of this information. In order to handle these variables properly in supervised classification tasks, alternatives to the naive Bayes classifier and logistic regression were proposed in the past. In this work, we propose directional-aware support vector machines. We address several realizations of the proposed models, studying their kernelized counterparts and their expressiveness. Finally, we validate the performance of the proposed Support Vector Machines (SVMs) against the directional naive Bayes and directional logistic regression with real data, obtaining competitive results
    corecore